notaR

Um sistema para notas automatizadas em cursos que utilizam a linguagem R


 


205.2 Regressão binomial

Neste exercício você vai ajustar um modelo de regressão binomial, para descrever a resposta de proporções a uma variável preditora. Para este exercício você deve ter em sua área de trabalho o objetos besor e blm, criados como no exercício 205.1
  1. A regressão binomial usa uma função de ligação logística. Crie um objeto da classe function no R que execute esta função logística para uma variável resposta x:

    \frac{e^{a + bx}}{1+e^{a + bx}}
  2. Os argumentos dessa função devem ser a variável independente (x), e os parametros a e b, nessa ordem. O nome da função deve ser logistica.

  3. Agora crie uma função de log-verossimilhança negativa do seguinte modelo: o número de besouros afetados é uma variável binomial, com parâmetro N igual ao número de expostos e parâmetro p que é uma função logística da concentração de inseticida. O nome deste objeto da classe function deve ser nLL.
  4. Finalmente, ajuste este modelo minimizando a função de verossimilhança negativa com a função mle2 do pacote bbmle (lembre-se: não inclua a linha library(bbmle) no script!). Use como valores iniciais (argumento start da funcao mle2) os coeficientes obtidos com a regressao linear simples do item 5 da seção anterior. Guarde o resultado do modelo em um objeto chamado bbin.
  5. Crie um objeto com nome bbin.cf com os coeficientes deste novo modelo.
  6. Use os coeficientes do item anterior e a função de ligação logistica do item 1 desta seção para calcular as proporcoes de besouros afetados previstas por este modelo. Acrescente esses valores previstos ao dataframe besor, com o nome pred.prop.bin.
  7. Compare os resultados do modelo ajustado neste exercício com a regressão gaussiana de logitos ajustada no exercício 205.1. Sugestões (não inclua os codigos no notaR):
    • Faça um gráfico das proporções observadas e previstas pelos dois modelos.
    • Compare as estimativas e erros-padrão dos dois modelos (e.g., exibidas com a funcao summary).
    • Compare intervalos de confiança e de plausibilidade dos dois modelos.

 

Submeter resposta ajuda?

 

Escolha o arquivo de resposta usando o botão acima